El “cuplón”; unidad funcional del acoplamiento contráctil.

Contenido principal del artículo

Eduardo Rios

Resumen

Este artículo examina la evolución del concepto de cuplón, unidad funcional del acoplamiento contráctil, originado hace más de quince años con los colegas Gonzalo Pizarro y Michael Stern. Este examen nos permitirá poner al día avances en el estudio del acoplamiento entre la excitación de origen nervioso y la contracción muscular. Como se verá, la investigación en el tema ha tenido recientemente un claro viraje hacia la búsqueda de formas de aplicación de los conceptos básicos en la prevención y el tratamiento de varias enfermedades. A su vez, el estudio de mutaciones hereditarias en las proteínas del cuplón permitió nuevos avances en la comprensión de las interrogantes más básicas (cuáles son sus funciones y sus interacciones supramoleculares) en una feliz y bastante inesperada potenciación mutua entre enfoques muy diferentes de la realidad. Este artículo sigue un desarrollo iterativo, describiendo primero los aspectos básicos del tema, pasando luego a los estudios aplicados, y a través de ellos volviendo a cuestiones fundamentales, ahora en pleno proceso de esclarecimiento.

Detalles del artículo

Cómo citar
Rios, E. (2014). El “cuplón”; unidad funcional del acoplamiento contráctil. Anales De La Facultad De Medicina, Universidad De La República, Uruguay, 1(1), 5-28. Recuperado a partir de https://anfamed.edu.uy/index.php/rev/article/view/92
Sección
Artículos de revisión
Biografía del autor/a

Eduardo Rios, Department of Physiology and Molecular Biophysics. Rush University. Chicago. IL.60612.USA.

Doctorado en Fisica.Department of Physiology and Molecular Biophysics. Rush University. Chicago. IL.60612.USA.

Citas

Sommer JR, High T, Ingram P, Kopf D, Nassar R, Taylor I. EJSR/JSR: three-dimensional geometry of an ionic charge with fuse. Ann N Y Acad Sci. 1998 Sep 16;853:361-4
Sandow A. Excitation-contraction coupling in muscular response. Yale J Biol Med. 1952 Dec;25(3):176-201
Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle Nature. 1988 Jan 28;331(6154):315-9
Ríos E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19-25;325(6106):717-20.
Tanabe T, Beam KG, Powell JA, Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134-9
Endo M, Tanaka M, Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34-6.
Endo M. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Physiol Rev. 2009;89: 1153–1176.
Schneider MF, Chandler WK. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244-6
Ríos E, Karhanek M, Ma J, González A. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1993 Sep;102(3):449-81.
Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965 May;12:88-118
Ríos E, Pizarro G. Voltage sensors and calcium channels of excitation-contraction coupling. Physiology. 1988; 3:223–27.
Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740-4.
Tsugorka A, Ríos E, Blatter LA. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22;269(5231):1723-6
Shirokova N, García J, Pizarro G, Ríos E. Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol. 1996 Jan;107(1):1-18.
Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem.1977; 81 (25):2340–61
Stern MD, Pizarro G, Ríos E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1997 Oct;110(4):415-40.
Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, et al. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol. 1999 Mar;113(3):469-89.
Stern MD, Ríos E, Maltsev VA. Life and death of a cardiac calcium spark. J Gen Physiol. 2013 Sep;142(3):257-74. doi: 10.1085
Diaz-Sylvester PL, Neumann JT, Fleischer S, Copello JA. Coupled gating of ryanodine receptors: evidence for a role of physical RyR-RyR interactions. Biophys J. 2014; 106(2 Supl 1) :109a–10a.
Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999 Sep;77(3):1528-39.
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006 Oct;3(10):793-5.
Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22275-80. doi: 10.1073
Scriven DR, Asghari P, Moore ED. Microarchitecture of the dyad. Cardiovasc Res. 2013 May 1;98(2):169-76.
Felder E, Protasi F, Hirsch R, Franzini-Armstrong C, Allen PD. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Biophys J. 2002 Jun;82(6):3144-9.
Shirokova N, García J, Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512 ( Pt 2):377-84.
Kirsch WG, Uttenweiler D, Fink RH. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol. 2001 Dec 1;537(Pt 2):379-89.
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, et al. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5235-40.
Carafoli E. Calcium -a universal carrier of biological signals. Delivered on 3 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 2005 Mar;272(5):1073-89.
Treves S, Vukcevic M, Maj M, Thurnheer R, Mosca B, Zorzato F. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J Physiol. 2009 Jul 1;587(Pt 13):3071-9.
Ríos E, Györke S. Calsequestrin, triadin and more: the molecules that modulate calcium release in cardiac and skeletal muscle. J Physiol. 2009 Jul 1;587(Pt 13):3069-70.
Boncompagni S, Thomas M, López JR, Allen PD, Yuan Q, Kranias EG, et al. Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One. 2012;7(7):e39962.
Faggioni M, Knollmann BC. Calsequestrin 2 and arrhythmias. Am J Physiol Heart Circ Physiol. 2012 Mar 15;302(6):H1250-60.
Maclennan DH, Zvaritch E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. Biochim Biophys Acta. 2011 May;1813(5):948-64.
Tomasi M, Canato M, Paolini C, Dainese M, Reggiani C, Volpe P, et al. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice. Am J Physiol Cell Physiol. 2012 Feb 1;302(3):C575-86.
Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, et al. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J. 2009 Jun;23(6): 1710-20.
Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012 Jun 15;21(12):2759-67.
Tung CC, Lobo PA, Kimlicka L, Van Petegem F. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature. 2010 Nov 25;468(7323):585-8.
Samsó M, Wagenknecht T, Allen PD. Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol. 2005 Jun;12(6):539-44.
Durham WJ, Wehrens XH, Sood S, Hamilton SL. Diseases associated with altered ryanodine receptor activity. Subcell Biochem. 2007;45:273-321.
Manno C, Figueroa L, Royer L, Pouvreau S, Lee CS, Volpe P, et al. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol. 2013 Sep 15;591(Pt 18):4439-57.
Pizarro G, Ríos E. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol. 2004 Sep;124(3):239-58.
MacLennan DH, Wong PT. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231-5.
43. MacLennan DH, Yip CC, Iles GH, Seeman P. 1972. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb Symp Quant Biol. 1973; 37: 469–77.
Manno C, Sztretye M, Figueroa L, Allen PD, Ríos E. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. J Physiol. 2013 Jan 15;591(Pt 2):423-42.
Bers DM. Excitation-contraction coupling and cardiac contractile force. Dordrecht: Kluwer Academic; 2001.
MacLennan DH, Chen SR. Store overload-induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol. 2009 Jul 1;587(Pt 13):3113-5.
Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res. 2008 Oct 10;103(8):e105-15.
Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H. Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3099-104.
Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, Györke S. Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res. 2002 Sep 6;91(5):414-20.
Györke S, Stevens SC, Terentyev D. Cardiac calsequestrin: quest inside the SR. J Physiol. 2009 Jul 1;587(Pt 13):3091-4.
Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992 Aug;63(2):497-517.
Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS. Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J. 2002 Jul;83(1):59-78.
Guo T, Gillespie D, Fill M. Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res. 2012 Jun 22;111(1):28-36.
Gillespie D, Fill M. Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J Mol Cell Cardiol. 2013 May;58:53-8.
Laver DR, Kong CH, Imtiaz MS, Cannell MB. Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol. 2013 Jan;54:98-100.
Zhao M, Li P, Li X, Zhang L, Winkfein RJ, Chen SR. Molecular identification of the ryanodine receptor pore-forming segment. J Biol Chem. 1999 Sep 10;274(37):25971-4.
Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E. Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence. J Physiol. 2005 Sep 1;567(Pt 2):523-43.
Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E. Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2982-7.
Ziman AP, Ward CW, Rodney GG, Lederer WJ, Bloch RJ. Quantitative measurement of Ca2(+) in the sarcoplasmic reticulum lumen of mammalian skeletal muscle. Biophys J. 2010 Oct 20;99(8):2705-14.
Robin G, Allard B. Major contribution of sarcoplasmic reticulum Ca(2+) depletion during long-lasting activation of skeletal muscle. J Gen Physiol. 2013 May;141(5):557-65.
Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol. 2006 May;13(5):521-30.
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882-7.
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Ríos E, et al. D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol. 2011 Aug;138(2):211-29.
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, et al. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. J Gen Physiol. 2011 Aug;138(2):231-47.
Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJ, et al. Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22326-31.
Rudolf R, Magalhães PJ, Pozzan T. Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol. 2006 Apr 24;173(2):187-93.
Tang S, Wong HC, Wang ZM, Huang Y, Zou J, Zhuo Y, et al. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16265-70.
Park H, Wu S, Dunker AK, Kang C. Polymerization of calsequestrin. Implications for Ca2+ regulation. J Biol Chem. 2003 May 2;278(18):16176-82.
Park H, Park IY, Kim E, Youn B, Fields K, Dunker AK, et al. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem. 2004 Apr 23;279(17):18026-33.
Sanchez EJ, Lewis KM, Danna BR, Kang C. High-capacity Ca2+ binding of human skeletal calsequestrin. J Biol Chem. 2012 Mar 30;287(14):11592-601.
Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium Ion coordination:  a comparison with that of Beryllium, Magnesium, and Zinc. J Am Chem Soc. 1996;118(24): 5752–5763.
Adam G, Delbruck M. Reduction of dimensionality in biological diffusion processes. In: Rich A, Davidson N, editores. Structural chemistry and molecular biology. San Francisco: W. H. Freeman; 1968. p. 198–215.
MacLennan DH, Reithmeier RA. Ion tamers. Nat Struct Biol. 1998 Jun;5(6):409-11. Comentario sobre: Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang CH. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol. 1998 Jun;5(6):476-83
Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science. 2004 Apr 9;304(5668):292-6.
Valdivia HH, Farrell EF, Antaramian A, Benkusky N, Zhu X, Rueda A, et al. Sorcin and ryanodine receptors in heart failure. J Muscle Res Cell Motil. 2004;25(8):605-7.
Pouliquin P, Dulhunty AF. Homer and the ryanodine receptor. Eur Biophys J. 2009 Dec;39(1):91-102.
Prosser BL, Hernández-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium. 2011 Oct;50(4):323-31.
Halling DB, Aracena-Parks P, Hamilton SL. Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE. 2006 Jan 17;2006(318):er1.
Felder E, Franzini-Armstrong C. Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1695-700.
Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res. 2011 Apr 1;108(7):871-83.
Samsó M, Feng W, Pessah IN, Allen PD. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol. 2009 Apr 14;7(4):e85.