Participación de los astrocitos y del transportador de glutamato EAAT2/GLT1 en la Esclerosis Lateral Amiotrófica

Contenido principal del artículo

Daniel Castro
Elke Díaz
Irma Lombardo
Patricia Cassina
Laura Martínez-Palma

Resumen

La Esclerosis Lateral Amiotrófica (ELA) es una enfermedad neurodegenerativa fatal, progresiva que afecta las motoneuronas superiores e inferiores del sistema nervioso central y se acompaña de reactividad glial. La patogenia de esta enfermedad no está del todo clara. Se han postulado diferentes mecanismos dentro de los cuales se destacan las alteraciones en el procesamiento del ARN, en el metabolismo proteico, en el transporte axonal y en la función mitocondrial, aumento del estrés oxidativo y excitotoxicidad. Los astrocitos presentan prolongaciones que rodean la sinapsis, donde se localizan los transportadores de glutamato que captan el exceso del neurotransmisor durante la actividad sináptica. En la ELA se han encontrado alteraciones en este mecanismo lo cual ha resaltado la participación de la glía en la progresión de la enfermedad. El glutamato actúa sobre dos familias de receptores: NMDA y no NMDA, cuyas alteraciones se vinculan con la patogenia de la enfermedad. Además, se ha probado que existe una alteración en la función y disponibilidad del transportador de glutamato EAAT2/GLT1, que contribuye al aumento de la concentración de glutamato extracelular. En este trabajo, el objetivo fue revisar la bibliografía sobre el rol de los astrocitos y el transportador de glutamato EAAT2/GLT1 en la patogenia de la ELA, con el fin de identificar algunos interrogantes aún no dilucidados para dirigir nuevas investigaciones que puedan mejorar el tratamiento de estos pacientes.

Detalles del artículo

Cómo citar
Castro, D., Díaz, E., Lombardo, I., Cassina, P., & Martínez-Palma, L. (2017). Participación de los astrocitos y del transportador de glutamato EAAT2/GLT1 en la Esclerosis Lateral Amiotrófica. Anales De La Facultad De Medicina, Universidad De La República, Uruguay, 4, 62-74. Recuperado a partir de https://anfamed.edu.uy/index.php/rev/article/view/285
Sección
Monografías
Biografía del autor/a

Daniel Castro, Facultad de Medicina, Udelar

Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República

Elke Díaz, Facultad de Medicina, Udelar

Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República

Irma Lombardo, Facultad de Medicina, Udelar

Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República

Patricia Cassina, Facultad de Medicina, Udelar

Estudiante de Medicina, Ciclo de Metodología Científica II, Facultad de Medicina, Universidad de la República

Laura Martínez-Palma, Facultad de Medicina, Udelar

Docente supervisor. Departamento de Histología y Embriología de la Facultad de Medicina, Universidad de la República, Montevideo

Citas

Kiernan M, Vucic S, Cheah B, Turner M, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55. Available from: http://dx.doi.org/10.1016/S0140-6736(10)61156-7

Marin B, Boumédiene F, Logroscino G, Couratier P, Babron M, Leutenegger A, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol.2017;46(1):57-74. doi: 10.1093/ije/dyw061.

Vázquez M, Ketzoián C, Legnani C, Rega I, Sánchez N, Perna A, et al. Incidence and Prevalence of Amyotrophic Lateral Sclerosis in Uruguay : A Population-Based Study. Neuroepidemiology.2008;30(2):105-11. doi: 10.1159/000120023

Riancho J, Gonzalo I, Ruiz Soto M, Berciano J. ¿Por qué degeneran las motoneuronas? Actualizaciónen la patogenia de la esclerosis lateral amiotrófica. Neurología. 2015;1–11. Disponible en: http://dx.doi.org/10.1016/j.nrl.2015.12.001

Brenner D, Müller K, Wieland T, Weydt P, Böhm S, Lulé D, et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain Res Rev. 2016(pt. 5);139:28.

Robbins y Cotran. Patología estructural y funcional. 9th ed. Barcelona: Elsevier Saunders; 2015. Frosch M, Douglas A, De Girolami U. Sistema nervioso central.Capítulo 28.p. 1251–318.

Heneka M, Rodríguez JJ, Verkhratsky A. Neuroglia in neurodegeneration.Brain Res Rev. 2010 May;63(1-2):189-211.

Miller R, Mitchell J,Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane database Syst Rev. 2012;CD001447.

Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal. 2009;11(7):1587–602.

Waxham M. Neurotransmitter receptors. En: Squire LR, Bloom FE, Spitzer NC, du Lac S, Ghosh A, Berg D. Fundamental Neuroscience. 3rd ed. San Diego California; 2009. Cap. 2 pt.9.

Lopez Costa JJ, Pecci Saavedra J. Sinapsis, neurotransmisión y generación del impulso nervioso. En: Cingolani HE. Fisiología de Houssay. 7ma. ed. El Ateneo; 2000. Cap. 9.

Kandel E, Schwartz J, Jessell T. Liberación de neurotransmisores. En: Principios de Neurociencia. 4ta ed. Mc Graw-Hill; 2001 Cap. 11. p. 253–79.

Gartner L, Hiatt J. Tejido nervioso. En: Tratado de Histología. 2da ed. 2002. Cap 9. p. 178-211.

Verkhratsky A, Butt A. General Pathophysiology of Neuroglia. En: Glial Physiology and Pathophysiology. Hoboken New Jersey; 2013. p. 431–450.

Pekny M, Pekna M. Biochimica et Biophysica Acta. Reactive gliosis in the pathogenesis of CNS diseases. BBA - Mol Basis Dis. 2016;1862(3):483–91.

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.

Sofroniew MV, Vinters HV. Astrocytes : biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

Bundesen L, Scheel T, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of Astrocyte-Meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurocience. 2003;23(21):7789–800.

Herrmann J, Imura T, Song B, Qi J, Ao Y, Nguyen T, et al. STAT3 is a Critical Regulator of Astrogliosis and Scar Formation after Spinal Cord Injury. J Neurosci. 2008;28(28):7231–43.

Verkhratsky A, Sofroniew M, Messing A, deLanerolle Nihal C, Rempe D, et. al. Neurological diseases as primary gliopathies : a reassessment of neurocentrism. ASN Neuro. 2012;4(3):131–49.

Rothstein J, Tsai G, Kuncl R, Clawson L, Cornblath D, Drachman D, et al. Abnormal excitatory amino acid metabolism in Amyotrophic Lateral Sclerosis. Ann Neurol. 1990;28(1):18–25.

Rothstein J, Kuncl R, Chaudhry V, Clawson L, Cornblath D, Coyle J, et al. Excitatory amino acid in Amyotrophic Lateral Sclerosis. Ann Neurol. 1991;30(2):224-25.

Rothstein JD, Martin LJ, Kungl RW. Decreased glutamate transport by the brain and spinal cord in Amyotrophic Lateral Sclerosis. N Engl J Med. 1992;326(22):1464–8.

Rothstein J, Van Kammen M, Levey A, Martin L, Kuncl R. Selective Loss of Glial Glutamate Transporter GLT-1 in Amyotrophic Lateral Scelrosis. Ann Neurol. 1995;38(1):73–84.

Flores-Soto M, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E. Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurologia. 2012;27(5):301–10.

Isaac JT, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–871.

Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1997;42(2):200–7.

Corona JC, Tapia R. Ca2+ permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo. Neuropharmacol. 2007;52(5):1219–1228.

Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, et al. Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem. 2003;85(3):680–689.

Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W. Ca(2þ)-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci. 2000;180(1-2):29–34.

Choi DW. Glutamate receptors and the induction of excitotoxic neuronal death. Prog Brain Re. 1994;100:47–541.

Lin C, Bristol L, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, et al. Aberrant RNA Processing in a Neurodegenerative Disease : the Cause for Absent EAAT2 , a Glutamate Transporter , in Amyotrophic Lateral Sclerosis. Neuron. 1998;20(3):589–602.

Vanoni C, Massari S, Losa M, Carrega P, Perego C, Conforti L, et al. Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis ( ALS ). J Cell Sci. 2004;117(Pt 22):5417–26.

Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH Jr, Trotti D. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem. 2006;281(20):14076–84.

Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, et al. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. 2004;47(1-3):263–74.

Migheli A, Cordera S, Bendotti C, Atzori C, Piva R, Schiffer D. S 100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci. 1999;261(1-2):25–8.

Maihöfner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundörfer B, Heuss D. Expression and localization of cyclooxygenase 1 and 2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci. 2003;18(6):1527–1534.

Anneser JM, Borasio GD, Cookson MR, Shaw PJ, Ince PG. Glial cells of the spinal cord and subcortical white matter up-regulate neuronal nitric oxide synthase in sporadic amyotrophic lateral sclerosis. Exp Neurol. 2001;171(2):418–421.

Sasaki S, Shibata N, Komori T, Iwata M. iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neurosci Lett. 2000;291(1):44– 48.

Bolaños JP, Heales SJ, Land JM, Clark JB. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurons and astrocytes in primary cultures. J Neurochem. 1995;64(5):1965–72.

Stewart VC, Sharpe MA, Clark JB, Heales SJ. , Astrocyte derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J Neurochem. 2000;75(2):694–700.

Hewett SJ, Csernansky CA, Choi DW. Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron. 1994;13(2):487–494.

Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, De León A, et al. Mitochondrial Dysfunction in SOD1 G93A -Bearing Astrocytes Promotes Motor Neuron Degeneration : Prevention by Mitochondrial-Targeted Antioxidants. J Neurosci. 2008;28(16):4115–22.

Miquel E, Cassina A, Martinez-Palma L, Bolatto C, Trías E, Gandelman M, et al. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One. 2012;7(4):1–9.

Miquel E, Cassina A, Martinez-Palma L, Souza J, Bolatto C, Rodriguez-Bottero S, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic Biol Med. 2014;70:204–13.

Becher B, Barker P, Owens T, Antel J. CD95–CD95L: can the brain learn from the immune system? Trends Neurosci. 1998;21(3):114–7.

Raoul C, Henderson CE, Pettmann B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J Cell Biol. 1999;147(5):1049–1062.

Raoul C, Estévez A, Nishimune H, Cleveland D, DeLapeyrière O, Henderson C, et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS linked SOD1 mutations. Neuron. 2002;35(6):1067–83.

Rao S, Yin HZ, Weiss JH. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. Neuroscience. 2003;23(7):2627–33.

Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–622.

Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan K. Human embryonic stem cellderived motor neurons are sensitive to the toxic effect of glial cells carrying an ALScausing mutation. Cell Stem Cell. 2008;3(6):637–648.

Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell. 2008;3(6):649–657.

Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L. Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem. 2006;97(3):687–96.

Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824–8.

Díaz-Amarilla P, Olivera-Bravo S, Trias E, Cragnolini A, Martínez-Palma L. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2011;108(44):18126–31.

Trias E, Ibarburu S, Barreto-Núñez R, Barbeito L. Significance of aberrant glial cell phenotypes in pathophysiology of Amyotrophic Lateral Sclerosis. Neurosci Lett. 2016;636:27–31.

Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, et al. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci. 2015;18(2):219–26.

Newman E, Kettenmann H, Ransom B. Glial cell regulation of extracellular potassium. Neuroglia. 1995;717–731.

Magistretti P. Neuron-glia metabolic coupling and plasticity. Exp Physiol. 2011;96(4):407–10.

Alvarez-Buylla A, García-Verdugo J, Tramontin A. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci. 2001;2(4):287–293.

Nedergaard M, Ransom B, Goldman S. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26(10):523–530.

Pfrieger F. Roles of glial cells in synapse development. Cell Mol Life Sci. 2009;66(13):2037–2047.

Abbott N. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005;25(1):5–23.

Shimizu H, Watanabe E, Hiyama T, Nagakura A, Fujikawa A, Okado H, et al. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 2007;54(1):59–72.

Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al. Astrocytes control breathing through pH-dependent release of ATP. Science. 2010;329(5991):571–575.

Huckstepp R, IdBihi R, Eason R, Dale N, Dicke N, Willecke K, et al. Connexin hemichannel-mediated CO2- dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol. 2010;588(Pt 20):3901–3920.

Gourine AV, Kasparov S. Astrocytes as brain interoceptors. Exp Physiol. 2011;96(4):411–416.

Gordon GR, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007;55(12):1214–1221.

Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–1376.

Bourne J, Harria K. Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci. 2008;31:47–67.

Nedergaard M, Verkhratsky A. Artifact versus reality–How astrocytes contribute to synaptic events? Glia. 2012;60(7):1013–23.

Christopherson K, Ullian E, Stokes C, Mullowney C, Hell J, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120(3):421–433.

Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–1178.

Barres B. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008;60(3):430–440.

Danbolt N. Glutamate uptake. Progr Neurobiol. 2001;65(1):1–105.

Sattler R, Rothstein J. Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol. 2006;175:277–303.