Megacariopoyesis humana in vitro: determinación de la concentración óptima de trombopoyetina

Contenido principal del artículo

Gerardo Romanelli
Silvia Olivera-Bravo
Carolina Beloso
Lucía Veiga
Noelia García
Hugo Giordano
Juan Claudio Benech
Inés Rauschert
Gustavo Folle
Adriana Mimbacas

Resumen

El estudio de la megacariopoyesis humana se ha visto obstaculizado por la relativa escasez de megacariocitos en la médula ósea (0,05-0,2 % de las células medulares), lo que ha llevado a la optimización de protocolos de expansión in vitro a partir de precursores de diversos orígenes (cordón umbilical, médula ósea y sangre periférica con o sin movilización previa). Los cultivos celulares a partir de precursores han permitido la producción y el estudio tanto de megacariocitos así como de proplaquetas y plaquetas Sin embargo, la producción in vitro óptima de megacariocitos que culminen todos los estadios de diferenciación es un reto aún no resuelto. En este trabajo reportamos los hallazgos concernientes a la determinación de las condiciones y concentraciones de trombopoyetina para lograr una óptima relación entre la cantidad de trombopoyetina empleada y el porcentaje y grado de diferenciación megacariocítica en muestras obtenidas de cinco donantes alogénicos aceptados para trasplante de médula ósea.

Detalles del artículo

Cómo citar
Romanelli, G., Olivera-Bravo, S., Beloso, C., Veiga, L., García, N., Giordano, H., Benech, J. C., Rauschert, I., Folle, G., & Mimbacas, A. (2019). Megacariopoyesis humana in vitro:. Anales De La Facultad De Medicina, Universidad De La República, Uruguay, 6(2). https://doi.org/10.25184/anfamed2019v6n2a1
Sección
Artículos originales
Biografía del autor/a

Gerardo Romanelli, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo. Uruguay

Silvia Olivera-Bravo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE). Montevideo. Uruguay

Carolina Beloso, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay

Lucía Veiga, Asociación Española

Sección Citometría de Flujo, Asociación Española Primera en Salud (AEPS), Montevideo, Uruguay

Noelia García, Asociación Española

Sección Citometría de Flujo, Asociación Española Primera en Salud (AEPS), Montevideo, Uruguay

Hugo Giordano, Asociación Española

Sección Citometría de Flujo, Asociación Española Primera en Salud (AEPS), Montevideo, Uruguay

Juan Claudio Benech, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay

Inés Rauschert, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay

Gustavo Folle, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) Montevideo, Uruguay

Adriana Mimbacas, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)

Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay

Citas

[1] Moreau T, Colzani M, Arumugam M, Evans A, Tijssen MR, Trotter M, et al. In Vitro Production Of Megakaryocytes and Platelets From Human Induced Pluripotent Cells By GMP Compatible Methods. Blood 2013;122(21):2401-2401.
[2] Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nature Communications 2016;7:11208.
[3] Woolthuis CM, Park CY. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 2016;127:1242-1248.
[4] Thornton MA, Poncz M. In vitro expansion of megakaryocytes from peripheral blood hematopoietic progenitors. Methods in Molecular Medicine 1999;31: 337-345.
[5] Sun L, Tan P, Yap C, Hwang W, Koh LP, Lim CK; et al. In vitro biological characteristics of human cord blood-derived megakaryocytes. Annals Academy of Medicine Singapore 2004;33(5): 570-575.
[6] Chang Y, Bluteau D, Debili N, Vainchenker W. From hematopoietic stem cells to platelets. Journal of Thrombosis and Haemostasis 2007;5(Suppl. 1):318–27.
[7] Schulze H, Shivdasani RA. Mechanisms of thrombopoiesis. Journal of Thrombosis and Haemostasis 2005;3:1714-1724.
[8] Guerriero R, Testa U, Gabbianelli M, Mattia G, Montesoro E, Macioce G, et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood 1995;86:3725-3736.
[9] Schulze H. Culture, Expansion, and Differentiation of Murine Megakaryocytes from Fetal Liver, Bone Marrow, and Spleen. Current Protocols in Immunology 2016;2(112): 22F.6.1-22F.6.15.
[10] Shivdasani RA, Schulze H. Culture, expansion, and differentiation of murine megakaryocytes. Current Protocols in Immunology 2005;22:Unit 22F.6.
[11] Yasul K, Matsumoto K, Hirayama F, Tani Y, Nakanostem T. Differences Between Peripheral Blood and Cord Blood in the Kinetics of Lineage-Restricted Hematopoietic Cells: Implications for Delayed Platelet Recovery Following Cord Blood Transplantation Cells 2003;21:143-151.
[12] Kanamaru S, Kawano Y, Watanabe T, Nakagawa R,, Suzuya H, Onishi T, et al. Low numbers of megakaryocyte progenitors in grafts of cord blood cells may result in delayed platelet recovery after cord blood cell transplant. Stem Cells. 2000;18:190-195.
[13] van den Oudenrijn S, von dem Borne AE, de Haas M. Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Experimental Hematolology 2000;28:1054-1061.
[14] Kim DK, Fujiki Y, Fukushima T, Ema H, Shibuya A, Nakauchi H. Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells. Stem Cells 1999;17:286-294.
[15] Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34+CD38– cells in cord blood and bone marrow. Blood 1995;86:3745-3753.
[16] Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 2002;99:888-897.
[17] Deutsch VR, Tomer A. Megakaryocyte development and platelet production. British Journal of Haematology 2006;134:453–466.
[18] Kaushansky K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 2008;111:981-986.
[19] González-Villalba AE, Falcón-Rodríguez CI, Fortoul-van der Goes TI. Vías de señalización implicadas en la megacariopoyesis. Gaceta Médica de México. 2010;146(2):136-143.
[20] Szalaia G, LaRue AC, Watson DK. Molecular mechanisms of megakaryopoiesis. Cellular and Molecular Life Sciences 2006;63: 2460–2476.
[21] Salunkhe V, Papadopoulos P, Gutiérrez L. Culture of megakaryocytes from human blood mononuclear cells. Bio-protocol, 2015;5(21): 1-10.
[22] Reiffers J, Cailliot C, Dazey B, Attal M, Caraux J, Boiron JM. Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologous CD34-positive cells. Lancet 1999;354:1092-3.
[23] Avanzi MP, Izak M, Oluwadara OE, Mitchell WB. Actin Inhibition Increases Megakaryocyte Proplatelet Formation through an Apoptosis-Dependent Mechanism. Plos One 2015;10(4): e0125057.
[24] Guan X, Zhang Y, Wang Y, Shen B, Ren Z, Ding X, et al. Safety and Efficacy of Megakaryocytes Induced from Hematopoietic Stem Cells in Murine and Nonhuman Primate Models. Stem Cells Translational Medicine 2017;6:897-909.
[25] Huang N, Lou M, Liu H, Avila C, Ma Y. Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production. Journal of Hematology & Oncology 2016;9(136):1-11.
[26] Balduini A, Badalucco S, Pugliano MT, Baev D, De Silvestri A, Cattaneo M, et al. In Vitro Megakaryocyte Differentiation and Proplatelet Formation in Ph-Negative Classical Myeloproliferative Neoplasms: Distinct Patterns in the Different Clinical Phenotypes. Plos One 2011;6(6):e21015.
[27] Boyer L, Robert A, Proulx C, Pineault N. Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. 2008;332:82-91.
[28] Duchez P, Chevaleyre J, Vlaski M, Dazey B, Bijou F, Lafarge X et al. Thrombopoietin to replace megakaryocyte-derived growth factor: impact on stem and progenitor cells during ex vivo expansion of CD34+ cells mobilized in peripheral blood. Transfusion 2011;51:313-318.
[29] Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by Flow Cytometry. Journal of Hematotherapy 1996;5:213-226.
[30] Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. Cytometry 1998;34:61-70.
[31] Ru YX , Zhao SX, Dong SX, Yang YQ, Eyden B. On the Maturation of Megakaryocytes: A Review with Original Observations on Human In Vivo Cells Emphasizing Morphology and Ultrastructure. Ultrastructural Pathology 2015;39(2):79–87.
[32] Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007;317:1767-1770.
[33] Stritt S, Nieswandt B. In vitro platelets in sight. Blood 2014;124(12):1849-1850.
[34] Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, et al. Platelet bioreactor-on-a-chip. 2014;124:1857-1867.
[35] Reems J-A, Pineault N, Sun S. In Vitro Megakaryocyte Production and Platelet Biogenesis: State of the Art. Transfusion Medicine Reviews 2010;24(1): 33–43.
[36] Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. Journal Of Cell Biology 2013;201(6): 785–796.
[37] Wang B,and Zheng J. Platelet generation in vivo and in vitro. SpringerPlus 2016;5:787.